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The average-atom model is applied to study Thomson scattering of x-rays from warm-dense mat-
ter with emphasis on scattering by bound electrons. Parameters needed to evaluate the dynamic
structure function (chemical potential, average ionic charge, free electron density, bound and con-
tinuum wave-functions and occupation numbers) are obtained from the average-atom model. The
resulting analysis provides a relatively simple diagnostic for use in connection with x-ray scatter-
ing measurements. Applications are given to dense hydrogen, beryllium, aluminum and titanium
plasmas. In the case of titanium, bound states are predicted to modify the spectrum significantly.

PACS numbers: 52.65.Rr, 52.70.-m, 52.38.-r, 52.25.Os, 52.27.Gr, 52.25.Mq

I. INTRODUCTION

Measurements of Thomson scattering of x-rays pro-
vide information on temperatures, densities and ioniza-
tion balance in warm dense matter. Various techniques
for inferring plasma properties from x-ray scattering mea-
surements have been developed over the past decade [1–
22]; these techniques together with the underlying theory
were reviewed by Glenzer and Redmer [23]

The present analysis of Thomson scattering from dense
plasmas is based on a theoretical model proposed by Gre-
gori et al. [3], one important difference being that the pa-
rameters used here to evaluate the Thomson-scattering
dynamic structure function are taken from the average-
atom model. The particular average-atom model used
here is described in [24]. The present work is closely
related to that of Sahoo et al. [25], where a somewhat
different version of the average-atom model was used.
Predictions from the present model differ substantially
from those in [25]. The origin and consequences of these
differences will be discussed later.

The Thomson scattering cross section for an incident
photon with energy, momentum (ω0, k0) and polariza-
tion ǫ0 scattering to a state with energy, momentum
(ω1, k1) and polarization ǫ1 is

dσ

dω1dΩ
=

(

dσ

dΩ

)

Th

ω1

ω0
S(k, ω), (1)

where

(

dσ

dΩ

)

Th

= |ǫ0 · ǫ1|2
(

e2

mc2

)2

. (2)

The dynamic structure function S(k, ω) appearing in
Eq. (1) depends on two variables: k = |k0 − k1| and

∗Electronic address: johnson\@nd.edu

ω = ω0 − ω1. As shown in the seminal work of Chi-
hara [26, 27], S(k, ω) can be decomposed into three
terms: the first Sii(k, ω) is the contribution from elas-
tic scattering by electrons that follow the ion motion,
the second See(k, ω) is the contribution from scattering
by free electrons and the third SB(k, ω) is the contri-
bution from bound-free transitions (inelastic scattering
by bound electrons) modulated by the ionic motion. In
the present work, the modulation factor is ignored when
evaluating the bound-free scattering structure function.
For the bound-free contribution, calculations carried out
using plane-wave final states are compared with calcu-
lations carried out using average-atom scattering wave
functions. Substantial differences are found between
these cases.

The average-atom model is discussed briefly in Sec. II
followed by a discussion of the three contributions to the
structure functions in Sec. III. In Sec. IV applications are
given to hydrogen, beryllium, aluminum and titanium
plasmas.

II. AVERAGE-ATOM MODEL

The average-atom model is a quantum mechanical ver-
sion of the temperature-dependent Thomas-Fermi model
of a plasma developed sixty-three years ago by Feyn-
man et al. [28]. In this model, the plasma is divided
into neutral Wigner-Seitz (WS) cells (volume per atom
VWS = A/ρNA, where A is the atomic weight, ρ is the
mass density and NA is Avogadro’s number). Inside each
WS cell is a nucleus of charge Z and Z electrons. Some
of these electrons are in bound states and some in con-
tinuum states. The continuum density is finite at the cell
boundary and merges into the uniform free-electron den-
sity Zf/VWS outside the cell. Each neutral cell can, there-
fore, be regarded as an ion imbedded in a uniform sea of
free electrons of density ne = Zf/VWS. To maintain over-
all neutrality, it is necessary to introduce a uniform (but
inert) positive background density Zf/VWS. The model,
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FIG. 1: (Color online) Upper panel: The radial density
4πr2n(r) for metallic Al at kBT = 5 eV (solid curve) inte-
grates to Z = 13 for r ≤ RWS. The continuum contribution
4πr2nc(r) (dashed curve) integrates to 3 for r ≤ RWS. The
bound 1s, 2s and 2p shells are completely occupied at this
temperature. Lower panel: The dashed curve illustrates the
Friedel oscillations of the continuum density and shows how
Nc(r) = nc(r)VWS converges to Zf = neVWS (solid line) for
r > RWS. The chemical potential predicted by the model is
µ = 0.2406 a.u. and the number of free electrons per ion is
Zf = 2.146.

therefore, describes an isolated (neutral) ion floating in
a (neutral) “jellium” sea.

The quantum-mechanical model here, which is dis-
cussed in Ref. [24], is a nonrelativistic version of the rel-
ativistic Inferno model of Liberman [29] and the more
recent Purgatorio model of Wilson et al. [30]; it is similar
to the nonrelativistic average-atom model described by
Blenski and Ishikawa [31]. Specifically, each electron in
the ion is assumed to satisfy the central-field Schrödinger
equation

[

p2

2
− Z

r
+ V

]

ψa(r) = ǫa ψa(r), (3)

where a = (n, l) for bound states or (ǫ, l) for continuum
states. Atomic units (a.u.) where e = h̄ = m = 1 are
used here. In particular, 1 a.u. in energy equals 2 Ry-
dbergs (27.211 eV), and 1 a.u. in length equals 1 Bohr
radius a0 (0.529 Å). The wave function ψa(r) is decom-
posed in a spherical basis as

ψa(r) =
1

r
Pa(r)Ylama

(r̂)χσa
, (4)

where Ylm(r̂) is a spherical harmonic and χσ is a 2-
component electron spinor. The bound and continuum

radial functions Pa(r) are normalized as

∫ ∞

0

drPnl(r)Pn′l(r) = δnn′ , (5)

∫ ∞

0

drPǫl(r)Pǫ′l(r) = δ(ǫ− ǫ′), (6)

respectively. The central potential V (r) in Eq. (1) is
taken to be the self-consistent Kohn-Sham potential [32]

V (r) = 4π

∫

1

r>
r′2n(r′)dr′ − xα

[

81

8π
n(r)

]
1

3

, (7)

where the first term in the R.H.S. is the direct screening
potential with r> = max(r, r′) and the second term is the
average exchange potential with xα = 2/3. The electron
density n(r) in Eq. (7) has contributions from bound-
states nb(r) and from continuum states nc(r),

n(r) = nb(r) + nc(r). (8)

The bound-state contribution to the density nb(r) is

4πr2nb(r) =
∑

nl

2(2l+ 1)

1 + exp[(ǫnl − µ)/kBT ]
Pnl(r)

2, (9)

where ǫnl is the bound-state energy, µ is the chemical po-
tential, and the sum over (n, l) ranges over all bound sub-
shells. The continuum contribution to the density nc(r)
is given by a similar expression with the bound state
radial functions Pnl(r) replaced by continuum functions
Pǫl(r) and the sum over n replaced by an integral over
ǫ. Finally, the chemical potential µ is chosen to insure
charge neutrality inside the WS cell:

Z =

∫

r≤RWS

n(r) d3r ≡
∫ RWS

0

4πr2n(r) dr . (10)

Equations (3-10) above are solved self-consistently to give
the chemical potential µ, the potential V (r) and the elec-
tron density n(r).

The boundary conditions used in solving Eq. (3) de-
serve some mention. Bound state wave functions and
their derivatives are matched at the boundary r = RWS

to solutions outside the WS sphere (where V = 0) that
vanish exponentially as r → ∞. Similarly, continuum
functions and their derivatives are matched to phase-
shifted free-particle wave functions at r = RWS. It should
be noticed that the continuum density nc(r) inside the
WS sphere, which oscillates as predicted by Friedel [33],
is distinctly different from the uniform free electron den-
sity ne. In the present model, nc(r) smoothly approaches
ne outside the sphere. These points are illustrated in
Fig. 1, where the bound-state and continuum densities
are plotted for Al at metallic density and temperature
kBT = 5 eV.

The boundary conditions used here differ from those
used by Sahoo et al. in Ref. [25], where the first derivative
of the wave function is required to vanish at RWS. The
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differences in boundary conditions lead to major differ-
ences in the average-atom structure. For example, the
model used in [25] predicts that the M-shell of metallic
Al is partially occupied at temperatures kBT ≤ 10 eV,
whereas the present model predicts that the M-shell is
empty in this temperature range. Consequences of such
differences are discussed later in Sec. IV.

III. DYNAMIC STRUCTURE FUNCTION

In the paragraphs below, the evaluation of S(k, ω) in
the average-atom approximation is discussed. As men-
tioned earlier, the theoretical model developed by Gre-
gori et al. [3] is used to evaluate the ion-ion contribu-
tion Sii(k, ω) to the dynamic structure function. Addi-
tionally, the procedure proposed in Ref. [8] is used to
account for differences between electron and ion tem-
peratures. The electron-electron contribution See(k, ω)
is expressed in terms of the dielectric function ǫ(k, ω)
of the free electrons which in turn is evaluated using
the random-phase approximation (RPA). Finally, bound-
state contributions to the dynamic structure function are
evaluated using average-atom bound state wave func-
tions. The final-state wave function is described in two
different ways: (1) using a plane-wave final-state wave
function as in Ref. [25], and (2) using an average-atom
final-state wave function that approaches a plane wave
asymptotically. There are dramatic differences between
these choices. The more realistic average-atom choice
automatically includes ionic Coulomb-field effects.

A. Ion-Ion Structure Function

The contribution to the dynamic structure function
from elastic scattering by electrons following the ion mo-
tion Sii(k, ω) is expressed in terms of the corresponding
static ion-ion structure function Sii(k) as:

Sii(k, ω) = |f(k) + q(k)|2Sii(k) δ(ω). (11)

In the above, f(k) is the Fourier transform of the bound-
state density and q(k) is the Fourier transform of elec-
trons that screen the ionic charge. In the average-atom
approximation, the screening electrons are the continuum
electrons inside the Wigner-Seitz sphere and

f(k) + q(k) = 4π

∫ RW S

0

r2[nb(r) + nc(r)]j0(kr)dr, (12)

where jl(z) are spherical Bessel functions of order l. Note
that f(0) + q(0) = Z in the average-atom model. Fur-
thermore, the delta function δ(ω) in Eq. (11) is replaced
by an “instrumental” Gaussian, with full-width at half
maximum = 10 eV in this work.

Approximate schemes to evaluate the static structure
functions Sii(k) are discussed, for example, in Ref. [34].
Here, we follow [3] and make use of formulas given

by Arkhipov and Davletov [35] that account for both
quantum-mechanical and screening effects. The function
Sii(k) in [35] is expressed in terms of the Fourier trans-
form of the ion-ion interaction potential Φii(r) through
the relation:

Sii(k) = 1 − ni

kBT
Φii(k). (13)

Different Electron and Ion Temperatures In the aver-
age atom model, T is the electron temperature Te which,
in equilibrium, is equal to the ion temperature Ti. To al-
low for different electron and ion temperatures, the equa-
tions for Sii(k) given by Arkhipov and Davletov [35] are
modified following the prescription laid out by Gregori
et al. [8]. The electron temperature Te is replaced by an
effective temperature T ′

e that accounts for degeneracy ef-
fects at temperatures lower than the Fermi temperature
TF . Similarly, the ion temperature Ti is replaced by an
effective temperature T ′

i that accounts for ion degeneracy
effects at temperatures lower than the ion screened Debye
temperature TD. Explicit formulas for Sii(k) are found
in [8]. The dramatic effect of different electron and ion
temperatures on the static structure functions Sii(k) for
metallic Be at Te = 20 eV are illustrated in the top panel
of Fig. 2. This figure is similar to the upper-left panel
of Fig. 1 in Ref. [8], which was obtained under similar
condition. In the bottom panel of Fig. 2 the contribution
to Sii(k, ω) for Be at Te = 20 eV and Ti = 2 eV is shown.

B. Electron-Electron Structure Function

The electron-electron structure function See(k, ω) is
expressed in terms of the plasma dielectric function
ǫ(k, ω) through Eq. (15) in Ref. [3]:

See(k, ω) = − 1

1 − exp(−ω/kBT )

k2

4πne
Im

[

1

ǫ(k, ω)

]

.

(14)
In the average atom model, the free electrons are uni-
formly distributed outside the WS sphere. The density of
these electrons is ne = Zf/VWS. In the present work, the
dielectric function is evaluated using the random-phase
approximation. The real and imaginary parts of the RPA
dielectric function ǫ(k, ω), given in Eq. (16) of Ref. [3],
can be written as

Re[ǫ(k, ω)] = 1 +
2

πk3

∫ ∞

0

F(p) p dp

×
[

ln

∣

∣

∣

∣

k2 + 2pk + 2ω

k2 − 2pk + 2ω

∣

∣

∣

∣

+ ln

∣

∣

∣

∣

k2 + 2pk − 2ω

k2 − 2pk − 2ω

∣

∣

∣

∣

]

(15)

and

Im[ǫ(k, ω)] =
2

k3

∫ b

a

F(p) p dp

=
2kBT

k3
log

[

1 + exp[(µ− a2/2)/kBT ]

1 + exp[(µ− b2/2)/kBT ]

]

(16)
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FIG. 2: (Color online) Upper panel: Sii(k) is shown for Be
metal at electron temperature Te=20 eV and ion-electron
temperature ratios Ti/Te=(1, 0.5, 0.1) illustrated in solid,
short dashed and long dashed curves, respectively. The value
k = 0.543 corresponds to an incident photon ω0 = 2960 eV
scattered at angle 40◦. Lower panel: Sii(k, ω) for Be metal
at Te = 20 eV and Ti = 2 eV, where the function δ(ω) is
replaced by a Gaussian of width 10 eV and k = 0.543.

with a = |2ω − k2|/2k and b = (2ω + k2)/2k. In these
equations,

F(p) =
1

1 + exp[(p2/2 − µ)/kBT ]
(17)

is the free-electron Fermi distribution function. It should
be noted that the real part of ǫ(k, ω) is an even function
of ω and the imaginary part is an odd function of ω.

The real and imaginary parts of ǫ(k, ω) along with
−Im[1/ǫ(k, ω)] are illustrated in the top panel of Fig. 3
for scattering of a 2960 eV photon at 20◦ from Be metal
at 20 eV. The sharp peak in Im[1/ǫ] that occurs near
the point where Re[ǫ] vanishes is a collective plasma
resonance (plasmon). The contribution to See(k, ω) is
shown in the bottom panel. The ratio of the down-shifted
(ω1 < 2960 eV) to up-shifted (ω1 > 2960 eV) resonance
peaks exp(∆ω/kBT ), where ∆ω is the energy of the plas-
mon peak relative to the central energy, is used to deter-
mine the electron temperature.

C. Scattering from Bound States

The structure function associated with Thomson scat-
tering from a bound state ψnl(r) with quantum numbers
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FIG. 3: (Color online) Upper panel: Real (solid) and
imaginary (dashed) parts of ǫ(k, ω) are plotted along with
Im[1/ǫ(k, ω)] (dot-dashed) for Be metal at kBT = 20 eV.
Lower panel: The resulting structure function See(k, ω)
(solid) is shown together with Sii(k, ω) (dashed). These plots
correspond to Thomson scattering of a 2960eV photon at 20◦.

(n, l) to a continuum state ψp(r) with momentum p is

Snl(k, ω) =

∑

m

∫

p dΩp

(2π)3

∫

d3r ψ†
p(r) eik·r ψnlm(r)

∣

∣

∣

∣

2

Ep=ω+Enl

. (18)

As mentioned previously, two possibilities are considered
for the final state in bound-free scattering: (1) a free-
particle plane wave, and (2) an average-atom contin-
uum wave that approaches a plane wave asymptotically.
Case (2) is clearly the more physical alternative since
continuum waves in the average-atom potential differ
markedly from free-particle wave functions. This point
is illustrated in Fig. 4, where the average atom radial-
functions Pǫl(r)/pr are compared with their free-particle
counterparts jl(pr). The average-atom wave functions
are seen to differ markedly from the free-partical (spher-
ical Bessel) functions for low values of l, but approach
free-particle functions as l increases.

a. Plane-wave final states Assuming that the final
state wave function is a free-particle plane wave eip·r, the
bound-free structure function in Eq. (18) can be rewrit-
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FIG. 4: (Color online) Comparison of average-atom con-
tinuum functions Pl(pr)/pr (solid lines) for metallic Al at
kBT = 5 eV with spherical Bessel functions jl(pr) (dashed
lines).

ten as

Snl(k, ω) =

∑

m

∫

p dΩp

(2π)3

∣

∣

∣

∣

∫

d3r eiq·r ψnlm(r)

∣

∣

∣

∣

2

Ep=ω+Enl

, (19)

where k = k0 − k1, ω = ω0 − ω1 and q = k − p. Note
that q is the momentum transferred to the ion. This
expression may be simplified to

Snl(k, ω) =
onl

πk

∫ p+k

|p−k|

q dq |Knl(q)|2, (20)

where onl is the occupation number of the final state and

Knl(q) =

∫ ∞

0

dr r jl(qr)Pnl(r). (21)

Eq. (20) depends implicitly on ω through the relation

p =
√

2(ω + Enl) .

b. Average-atom final states In the average-atom
approach, the final state wave function consists of a plane
wave plus an incoming spherical wave. (n.b. An outgo-
ing spherical wave is associated with an incident electron.
Time-reversal invariance, therefore, requires that a con-
verging spherical wave be associated with an emerging
electron.) The bound-free structure function in Eq. (18)
may be reexpressed as

Snl =
2p

π
onl

∑

l1l2

Al1ll2 |Il1ll2(p, k)|2, (22)
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FIG. 5: (Color online) The beryllium K-shell structure func-
tion S1s(k, ω) is shown for incident photon energy 2960 eV and
scattering angles 30◦ and 150◦. The black curves show plane-
wave results, the blue lines show the result obtained using an
average atom final-state wave function and the red lines show
exact nonrelativistic Coulomb results. The dramatic suppres-
sion of average atom and Coulomb structure functions at for-
ward angles (the corresponding curves are multiplied by 10)
is evident in the upper panel.

where onl is the occupation number of the final state with

Il1ll2(p, k) =
1

p
eiδl1

(p)

∫ RWS

0

dr Pǫl1(r)jl2 (kr)Pnl(r).

(23)
and

Al1ll2 = (2l1 + 1)(2l2 + 1)

(

l1 l l2
0 0 0

)

. (24)

In the above, δl1(p) is the phase-shift of the final state

partial wave Pǫl1(r). Moreover, ǫ = ω + Enl, p =
√

2ǫ
and k = |k0 − k1|.

In Fig. 5, several calculations of the structure function
S1s(k, ω) are compared for a photon of incident energy
2960 eV scattered at 30◦ and 150◦ from the K-shell of
beryllium metal at T = 20 eV. The results of calculations
carried out using average-atom final states are smaller
than those using plane-wave final states by a factor of
about 40 at forward angles and 2.5 at backward angles.
This suppression is a characteristic Coulomb field effect.
Indeed, exact nonrelativistic Coulomb-field calculations
of Thomson scattering [36], with nuclear charge adjusted
to align the Coulomb and average atom thresholds, show
a similar suppression.
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IV. APPLICATIONS

In the subsections below, S(k, ω) is evaluated in the
average-atom approximation for cases of possible ex-
perimental interest: hydrogen at ne = 1024 cm−3 and
T = 50 eV, beryllium at ne = 1.8 × 1023 cm−3 and
T = 18 eV, metallic aluminum at T = 5 eV and metallic
titanium at T = 10 eV.

A. Hydrogen at T = 50 eV and ne = 1024 cm−3

In the average-atom model, a density ρ =1.931 g/cc is
required at T = 50 eV to achieve free-electron density
ne = 1024 cm−3. The chemical potential in this case is
µ = −1.091 (a.u.). Under these conditions of temper-
ature and density, hydrogen is completely ionized. The
continuum density nc(r) inside the WS sphere merges
into the free-electron density ne outside the sphere. The
total number of electrons inside the WS sphere Nc =

4π
∫ RWS

0 r2nc(r)dr = 1, however, Zf = 0.8667.
Since there are no bound electrons in this case, only

Sii and See contribute to the cross section. Dynamic
structure functions for scattering of a 5 keV photon at
angles ranging from 20◦, 30◦ and 40◦ are shown in the
top panel of Fig. 6. Resonance peaks are seen to broaden
and move to higher frequencies as the scattering angle
increases. The coherence parameter α = 1/(λsk), defined

in Eqs. (5-7) of Ref. [23], is plotted in the bottom panel
of Fig. 6. The parameter λs is the shielding length, given
by

λs =

√

kBTF1/2(µ/kBT )

4πneF−1/2(µ/kBT )
, (25)

where Fj(x) is a complete Fermi-Dirac integral,

Fν(x) =
1

Γ(1 + ν)

∫ ∞

0

yν

1 + exp(y − x)
. (26)

For this particular case, λs = 1.071 (a.u.). The value of
λs differs only slightly from the WS radius RWS = 1.118
a.u.. The resonant features in Fig. 6 are distinct for α > 1
but disappear for α ≤ 1, in harmony with the fact that
plasmon resonances are collective phenomena. It should
be noted that the (unperturbed) plasma frequency for
hydrogen at ne = 1024 cm−3 is ωpl = 37.1 eV.

B. Beryllium at T = 18 eV and ne = 1.8 × 1023 cm−3

In the bottom panel of Fig. 7, the structure function
for scattering of a 2963 eV photon at 40◦ from beryl-
lium (density = 1.636 g/cc) at Te = 18 eV is plotted.
The L-shell electrons are completely stripped under these
conditions but the K-shell remains 97% occupied. The
chemical potential is µ = −0.5311 a.u. and the number
of free electrons per ion Zf = 1.647. The ion tempera-
ture, which governs the amplitude of the elastic peak, is
chosen to be Ti = 2.1 eV in this example. For the case
at hand, the coherence parameter is α = 1.21, so one
expects and observes plasmon peaks in the scattering in-
tensity profile. The average-atom removal energy for a
K-shell electron is 86.8 eV. One therefore expects to find
a contribution to S(k, ω) from K-shell electrons for ener-
gies ω1 < 2876 eV. The K-shell contribution multiplied
by 50 is shown in the bottom panel.

To validate the present average-atom model against
experimental data, a Be experiment done at the Omega
laser facility that used a Cl Ly-α source to scatter from
nearly solid Be at an angle of 40◦ is used. An electron
temperature of 18 eV, ion temperature of 2.1 eV, and
density of 1.647 g/cc used in the average-atom model
gives an electron density of 1.8 × 1023/cc, in agreement
with the analysis in Ref. [37]. The top panel of Fig. 7
shows the experimental source function from the Cl Ly-
α line as a blue dashed line. Because of satellite structure
in the source we approximate the source by 3 lines: a Cl
Ly-α line at 2963 eV with amplitude 1 and two satellites
at 2934 and 2946 eV with relative amplitudes of 0.075
and 0.037 respectively. Doing the Thomson scattering
calculation using the 3 weighted lines, we calculate the
scattering amplitude for Thomson scattering (red dashed
line) and compare against the experimental data (black
solid line) here. We observe excellent agreement within
the experimental noise. Contributions from the bound 1s
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FIG. 7: (Color online) Bottom panel: Structure function
S(k, ω) for scattering of a 2963 eV photon at 40◦ from metallic
beryllium at Te = 18 eV. Top panel: Intensity measurements
for scattering of a Cl Ly-α x-ray from beryllium at 40◦ [37];
measurement (solid line), source function (dot-dahsed line),
and average atom fit (dashed line).

electrons, which have a threshold at 2876 eV, are beyond
the range of the data shown in the top panel.

C. Aluminum at T = 5 eV and metallic density

Metallic aluminum (ρ = 2.70 gm/cc) at T = 5 eV has a
Ne-like ion configuration with two 2s electrons bound by
92.2 eV and six 2p electrons bound by 54.9 eV. There
are three continuum electrons inside the WS sphere
RWS = 2.99 (a.u.). The continuum density inside the
sphere nc(r) converges to the uniform free-electron den-
sity ne = Zf/VWK, where Zf = 2.146. In Fig. 8, the
structure function S(k, ω) is plotted for the case of an in-
cident 2.96 keV photon scattered at 30◦. The coherence
parameter α = 1.95 in this case, explaining the promi-
nent plasmon resonance seen on the low-frequency side of
the elastic scattering peak. Also shown in the figure are
contributions from the bound L-shell electrons scaled up
by a factor of 100. It should be noted that, by contrast
with the average-atom calculations presented in Ref. [25],
the M shell of Al is completely empty at temperatures
below 10 eV in the present model and the prominent M -
shell features predicted in Ref. [25] do not arise in the
present analysis.
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ω
) (
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)

L-Shell * 100

FIG. 8: (Color online) Structure function S(k, ω) for scat-
tering of an 8 keV photon at 30◦ from metallic aluminum
(Z = 13) at Te = 5 eV and Ti/Te = 0.1. Contributions from
the L-shell of the Ne-like core multiplied by 100 are indicated
on the plot.

D. Titanium at T = 10 eV and metallic density

Titanium (Z = 22) at metallic density (ρ = 4.51 g/cc)
and T = 10 eV is a case where sharp peaks from excita-
tions of bound M-shell electrons show up in the energy
spectrum along with the plasmon peaks. The average-
atom model predicts that metallic Ti is in an Ar-like
configuration at T = 10 eV with completely filled K
and L shells together with 1.97 3s electrons bound by
44.40 eV and 5.36 3p electrons bound by 22.88 eV.
There are 4.67 continuum electrons inside the WS sphere
RWS = 3.05 (a.u.). The continuum density inside the
sphere converges to the uniform free-electron density
ne = Zf/VWK outside the sphere, with Zf = 2.305. The
chemical potential is µ = −0.0511 au. In Fig. 9, the dy-
namic structure function S(k, ω) is shown for the case of
an incident 2.96 keV photon scattered at 30◦ and 150◦.
Plasmon peaks, which are prominent for scattering at
30◦, disappear for scattering at 150◦ while the 3s and
3p bound-state peaks grow. The M-shell contributions
to the structure function are comparable to the plasmon
contribution for the 30◦ case and are the dominant fea-
tures on the low-frequency side of the elastic peak at
150◦.

V. SUMMARY

A scheme for analysis of Thomson scattering from
plasmas based on the average-atom model, a quantum-
mechanical version of the “Generalized Thomas-Fermi
Theory” of Feynman, Metropolis and Teller [28] is pre-
sented. Given the plasma composition (Z,A), density ρ
and temperature T , the model gives, in addition to the
equation of state of the plasma, all parameters needed for
a complete description of the Thomson scattering pro-
cess. In particular, the average-atom code predicts wave
functions for bound and continuum electrons, densities
of bound, screening and free electrons, and the chemical
potential.
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FIG. 9: (Color online) Dynamic structure function S(k, ω) for
scattering of a 2960 eV photon at 30◦ and 150◦ from metallic
Ti at Te = 10 eV. Contributions to S(k, ω) (solid curve) from
See(k, ω) (dashed curve) and SB(k, ω) (dot-dashed curve) are
shown.

Predictions of the present average-atom model disagree
with those in [25] where a similar model with different
boundary conditions is used. In particular, in Ref. [25],
3d electrons were bound in metallic Al for temperatures
between 2 and 10 eV, leading to substantial bound-state
contributions to the dynamic structure function. In the
present model the 3d subshell of metallic aluminum is
vacant in the temperature range T ≤ 10 eV and the
corresponding bound-state features are absent.

Elastic scattering from bound and screening electrons
is treated following the model proposed by Gregori et al.

[3] which makes use of formulas for the static ion-ion
structure function Sii(k) given by Arkhipov and Davle-
tov [35]. Modifications suggested by Gregori et al. [8]
to account for different electron and ion temperatures
are also included. Treatment of the ion-ion structure
function appears to be the weakest aspect of the present
analysis. The dynamic structure function for scatter-
ing from free electrons depends sensitively on the free-
electron dielectric function ǫ(k, ω). Again, we follow the
model proposed in Ref. [3] and evaluate the dielectric
function in the random-phase approximation. The RPA
dielectric function includes features such as plasmon res-
onant peaks that show up in experimental intensity pro-
files and can be used in connection with the principle
of detailed balance to determine electron temperatures.
Bound-state features are included in the present scheme,
inasmuch as the average-atom model provides bound-
state and continuum wave functions. Coulomb-field ef-
fects are automatically included in calculations carried
out using average-atom continuum states rather than
plane waves to describe the final state electron. In con-
clusion, the average-atom model provides a simple and
consistent point of departure for theoretical analysis of
Thomson scattering from plasmas.
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